Что такое координаты точек

Как найти Координаты Точки? Примеры

Что такое координаты точек

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

А вот и координаты увлекательных уроков математики: на интерактивной платформе и в комфортном темпе!

Запишите ребенка на бесплатный вводный урок в онлайн-школу Skysmart, чтобы закрыть пробелы по школьной программе и не бояться контрольных.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Правила координат:

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

 

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

 

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

 

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

В детской школе Skysmart ученики чертят графики на специальной онлайн-доске вместе с учителем. А еще решают задачки в интерактивном формате и смело задают вопросы, которые бывает неловко спросить перед всем классом.

Запишите ребенка на бесплатный вводный урок математики и начните заниматься весело и в удовольствие уже завтра!

Шаг 1 из 2. Данные ученика

Источник: https://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki

Этюд о координатах

Что такое координаты точек
Изображение с сайта omartasatt.ru

Человеку всегда было важно понять свое место в окружающем мире. Причем не только в пространстве, но и во времени, и в социуме.

Оставим в стороне время и социум, это тема отдельного большого разговора. Сосредоточимся на пространстве.

Как определить свое местоположение, местоположение других людей и окружающих предметов? И, что даже более важно, как сообщить это местоположение другим?

Что определить абсолютное местоположение невозможно люди поняли очень давно. Можно только относительно чего либо, какого либо ориентира. Пример такого относительного позиционирования можно найти у Конан Дойля в “Обряд дома Месгрейвов”. Помните?

“Сколько надо сделать шагов?”
“На север – десять и десять, на восток – пять и пять, на юг – два и
два, на запад – один и один и потом вниз”.

В современной терминологии, ориентир и набор условий, которые определяют его использование, называют системой координат. А сами координаты определяют положение объекта в этой системе.

Развитие мореплавания, астрономии, геометрии, других наук, потребовало более точного и единообразного способа задания координат объектов. Давайте повнимательнее посмотрим на некоторые системы координат, их применение, изменение, и взаимосвязь между ними. В этой статье, как всегда, будет математика, но почти не будет физики.

Одномерная система координат

Давайте вспомним статью “Сага о треугольниках”. Там я немного касался темы систем координат, когда говорил о прямой и плоскости. Начнем с простейшего случая – координатного луча.

Точку, относительно которой указывается положение, или координата, других точек называют началом координат. Обычно ее обозначают “0”. Расстояние от начала координат до точки А (в нашем примере) называют координатой. В данном случае координата может быть только положительной, что кажется лишним, и искусственным ограничением. Это можно изменить

Название “координатная прямая” не совсем верное. Прямая не имеет направления. Луч имеет направление, но при этом имеет начало (как в первом случае). Тем не менее, буду использовать именно термин координатная прямая.

Но для любителей точности могу сказать, что так как точка делит прямую на два луча, то направление одного из них можно принять за положительное, а другого за отрицательное. Направление положительного луча обозначим стрелкой, а направление отрицательного ничем не будет обозначаться.

Точка, разделившая прямую на два координатных луча, относительно которой указывают местоположение (координаты) других точек, точно так же называется началом координат.

В этом примере “координату точки А” можно просто обозначить как “А”, и она положительна. Координата точки Б отрицательна и обозначается как “-Б”. Расстояние между двумя точками определяется как разность их координат. Исходя из этого получим, для нашего примера, расстояние АБ=А-(-Б)=А+Б.

Несмотря на простоту эта система координат применяется достаточно широко. Посмотрите на обычную линейку. Посмотрите на градусник. И это лишь простейшие примеры того, где она применяется.

Двумерная прямоугольная система координат. Декартова система координат

Теперь возьмем две пересекающиеся под прямым углом координатные прямые на плоскости. Мы получим самую широко используемую систему координат Декартову прямоугольную систему координат. Ее знают все еще со школьной скамьи. Ее я тоже упоминал, кратко, в статье “Сага о треугольниках”. Давайте посмотрим на нее внимательнее.

Пока все просто, совсем как в школьных учебниках. Теперь координаты точки на плоскости задаются парой чисел. Точка А имеет координаты (Xа,Ya), а точка Б (Хб,-Yб). Координата Х называется абсциссой, а Y ординатой. Расстояние между точками А и Б, или длина отрезка АБ, теперь определяется гораздо сложнее

Откуда взялась эта формула? Если бы отрезок АВ был параллелен оси Х, то его длина была бы равна Хв-Ха, точно так же, как в одномерной системе координат. А если он будет параллелен оси Y, то Yb-Ya. Но у нас отрезок координатным осям не параллелен. А теперь посмотрите на эту же иллюстрацию под несколько другим углом

Видите прямоугольный треугольник? Да, мы опять встретили старого знакомого. И наш отрезок это гипотенуза треугольника. Если вспомнить, что квадрат гипотенузы равен сумме квадратов катетов, то приведенная выше формула становится совершенно очевидной и понятной.

В декартовой системе координат можно задавать не только точки, но и произвольные плоские кривые (мы пока говорим о плоскости). Кривые задаются функциями определяющими зависимость между X и Y. Вот примеры нескольких, хорошо знакомых вам, еще со школы, кривых

Пока ничего особо интересного не было. До сих пор мы не выходили за пределы школьного учебника, но сейчас сделаем небольшой, совсем небольшой, шаг в сторону аналитической геометрии. Не пугайтесь, для понимания будет достаточно знаний геометрии и тригонометрии в рамках школьной программы.

Иногда нужно сменить систему координат, например, для упрощения расчетов. Так координаты вазы на столе можно отсчитывать от угла комнаты, а можно от угла стола. И тут у нас возникает вопрос, а как же изменятся координаты? Другими словами, нам нужны правила преобразования координат между двумя системами координат.

Сначала рассмотрим простейший пример переноса точки начала координат из точки О в точку О1. При этом у нас координатные оси новой системы координат будут параллельны координатным осям старой системы координат

Тут все просто, простейшая арифметика. Мы сдвинули точку начала координат O(0,0) в точку O1(dx,dy). При этом, в новой системе координат точка О1 будет иметь координаты (0,0). Преобразование координат между старой и новой системами будет таким

Но мы можем не только перенести начало координат, но и повернуть новую систему координат.

В этом случае преобразование координат будет сложнее. Я не буду приводить полный вывод формул преобразования координат, что бы излишне не усложнять статью, но покажу, откуда они берутся. Для этого рассмотрим упрощенный случай поворота системы координат без переноса ее начала

Поворот системы координат вокруг своего начала на угол α против часовой стрелки эквивалентен повороту точки А вокруг начала координат на тот же угол, но уже по часовой стрелке. Мы видим два прямоугольных треугольника. Если связать изменение абсциссы и ординаты точки А с углом поворота и добавить сдвиг начала координат, то получим вот такие формулы преобразования

Те, кто знаком с аналитической геометрией, без сомнения, узнали эти формулы. А остальные теперь узнали, откуда они взялись и могут просто применять их, если потребуется.

Давайте вернемся в рамки школьной программы. Кроме замены системы координат возможен и более простой случай преобразования координат. Я говорю об изменении масштаба по осям. По другому это можно назвать деформацией.

Масштаб по осям Х и Y может быть разным. При этом точка начала координат остается на месте. Я не буду приводить формулы преобразований, настолько они просты.

Все преобразование будет сводиться к умножению, или делению, на коэффициент масштабирования.

Безусловно, возможно и одновременное выполнение переноса центра координат с поворотом и масштабированием.

Двумерные системы координат. Общий случай

На самом деле, система координат не обязательно требует прямого угла между осями координат. Угол может быть любым. Если при этом оси координат остаются прямыми линиями мы получим аффинную систему координат. Пример аффинной системы можно найти в статье “Сага о треугольниках”, правда там я ее так не называл.

Но координатные оси не обязаны быть прямыми. Возможен, например, такой случай

Рассмотрение подобных систем координат выходит далеко за рамки статьи, поэтому я ограничусь лишь этим примером.

Трехмерная декартова система координат

А если мы перейдем в более привычный нам трехмерный мир? К системе координат добавится ось Z. Теперь у нас Х это ширина, Y это высота, а Z это глубина пространства. Если воспользоваться обычным языком, а не математическим. Координата Z называется аппликатой

При этом с направлением оси Z могут быть варианты. Она может идти от нас, как показано на рисунке, или к нам. Это не меняет саму суть системы, но влияет на знак координаты z. Иногда говорят о правосторонней и левосторонней системах координат. На рисунке я изобразил левостороннюю. Если бы ось Z шла к нам, то система была бы правосторонней.

Точки Ayoz, Axoz и Axoy, на рисунке, являются проекциями точки А на соответствующую координатную плоскость.

С трехмерной декартовой системой координат возможны те же самые преобразования, которые мы рассматривали для двумерной. Но сами формулы будут гораздо сложнее и я не буду их приводить. При желании, их можно найти в учебниках аналитической геометрии.

Полярная система координат

Вы когда-нибудь задумывались о том, насколько противоестественной для человека является декартова система координат? Действительно, эта система фактически “взгляд со стороны”, тогда как человек чаще всего чувствует центром именно себя. Вы же не считаете, что, например, дерево расположено от вас в 5 шагах точно направо и 8 шагах точно вперед? Гораздо привычнее сказать, что дерево впереди и немного правее вас и расстояние до него шагов 10.

Этого мало? Посмотрите, например, на свою руку. Она имеет несколько центров вращения – плечо, локоть. И длина костей руки неизменна. Посмотрите на промышленных роботов, например, работающих на сборке автомобиля. Та же самая картина, несколько центров вращения (называемых осями) и сегменты неизменной длины.

Так не проще ли задавать координаты в виде угла поворота относительно центра вращения и расстояния от центра вращения до точки? Пилоты самолетов примерно этим и пользуются. Например, другой самолет на 10 часах и в 100 метрах означает, что он впереди и левее на 60 градусов, а расстояние до него 100 метров.

В математике такая система координат называется полярной. Вместо расстояний по осям в ней задается расстояние от полюса, центра координат, и угол, отсчитываемый против часовой стрелки, от полярной оси.

В полярной системе координаты точки А будут (r,φ). Выглядит непривычно? Между тем, полярная система координат, хоть и менее распространена, чем декартова, среди не математиков, находит широкое применение.

При этом надо отметить, что угол φ обычно лежит в пределах от 0 до 180 градусов. Или, что тоже самое, от 0 до π.

Если угол больше 180 градусов, то меняют на угол противоположного знака (отсчет не против, а по часовой стрелке).

Уравнениях некоторых кривых в этой системе выглядят проще, чем в декартовой

Да, уравнение окружности, центр которой не расположен в полюсе, выглядит сложноватым. Зато уравнение окружности с центром в полюсе очень простое. А мы ведь всегда можем сменить систему координат перенеся полюс. Прямая линия в полярной системе задается через нормаль, а не двумя точками, но само уравнение достаточно простое.

Кроме механики, я уже говорил о движениях роботов, полярная система находит применение и для работы с комплексными числами. А значит, широко применяется, например, в электротехнике и электронике (помните угол сдвига фазы?). Может использоваться и для векторных вычислений.

Я не буду рассматривать преобразования (сдвиги и вращения) для полярной системы координат. Те, кто в таких преобразованиях нуждаются, аналитическую геометрию и так знают. А для остальных это будет не слишком интересно, Но покажу, как она связана с ранее описанной декартовой системой координат. Да, это опять будут прямоугольные треугольники

Теперь мы можем выразить угол через отношение катетов, то есть координат точки А. А длину вектора r определить через теорему Пифагора. Точно так же легко выполняется и обратное преобразование.

Но давайте посмотрим на эти формулы внимательнее, нет ли тут скрытых проблем? А они есть! Что если наша точка лежит на одной из координатных осей? Увидели? Я специально выделил это красным. Это показывает, что нельзя бездумно применять формулы. Поэтому угол φ обычно вычисляют по другим формулам

Источник: https://zen.yandex.ru/media/id/5b935f60343d6c00a9f52b06/etiud-o-koordinatah-5c9b13fabc05f82fd5572ce0

Шкалы, координаты | Школьная математика. Математика 5 класс

Что такое координаты точек

 

Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.

Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.

Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).

Рисунок 1. Измерительная линейка.

Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.

Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).

Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.

Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.

Чтобы узнать цену деления шкалы, нужно:1. взять любые два значения на шкале (лучше брать соседние, обозначенные числами),2. найти разность между ними,3. посчитать количество делений шкалы, которые находятся между выбранными нами значениями,

4. результат деления числа, полученного в пункте 2, на число, полученной в пункте 3, и будет ценой деления данной шкалы.

Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см.

В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений.

Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.

Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.

Рисунок 2 Цена деления шкалы

Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?

Конечно же разную! Хоть столбик этих двух термометров и находится на высоте двух делений над значением 20, цена этих делений разная. Левый термометр показывает температуру 22°C (читается как двадцать два градуса Цельсия), а правый — 24°C.

Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д.

На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей.

Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:

  • левый термометр – 10:10=1°C;
  • правый термометр – 20:10=2°C.

Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.

Координатный луч, единичный отрезок, координаты точки

Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.

Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.

Рис. 3. Луч с началом в точке O

Отметим на этом луче отрезок произвольной длины OP. Справа от него отметим равный ему отрезок PR, и продолжим отмечать далее подобным образом отрезки, равные отрезку OP, до тех пор, пока не закончится нарисованный нами луч. В итоге у нас получится следующее.

Рис. 4. Луч с равными отрезками

Поставим возле начала луча (точки O) число 0 (нуль). Возле второго конца отрезка OP (возле точки P) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).

Отрезок OR у нас состоит из двух отрезков: OP и PR, то есть OR=OP+PR.

А так как по условиям нашего построения PR=OP, то мы можем записать, что OR=OP+OP, или OR=1+1=2.

Поставим возле точки R найденное нами значение длины отрезка OR, то есть, число 2.

Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.

Рис. 5. Луч с отрезками и цифрами

Покажу еще раз на примере точки S:

OS=OR+RS,

так как RS=OP (по условиям построения данных отрезков),

тогда OS=OR+OP;

подставив известные нам значения длины отрезков OR и OP, получим:

OS=2+1, или OS=3.

Значит, точке S на нашем лучу соответствует число 3.

Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.

Рис. 6. Координатный луч

Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.

Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.

Равные отрезки, на которые мы разбили луч, – это деления шкалы.

Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.

Другими словами, единичный отрезок можно назвать ценой деления.

Определение

Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.

Координатный луч — это не что иное, как бесконечная шкала.

Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.

Рис. 7. Разные варианты единичного отрезка

Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета).

Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число.

В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).

Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.

Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.

На числовом луче можно отобразить какое угодно число n, принадлежащее натуральному ряду.

Для этого на нем отмечают точку (к примеру, A) на расстоянии n единичных отрезков от точки отсчета O.

При этом число n называют координатой точки A и записывают в виде A(n), что читается как «точка A с координатой n» .

Запомните

Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.

Для примера отметим на координатном луче точки A, B, C и определим их координаты.

Рис. 8. Координаты точек

Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A(5), B(8), C(13).

В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.

Рис. 9. Большие числа на координатном луче.

Источник: https://easy-math.ru/scales-coordinates/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.