Как можно поделить

Деление в столбик., калькулятор онлайн, конвертер

Как можно поделить

Деление столбиком (также можно встретить название деление уголком) — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым, делится на другое, называемое делителем, производя результат, называемый частным.

Столбиком можно проводить как деление натуральных чисел без остатка, так и деление натуральных чисел с остатком.

Правила записи при делении столбиком

Начнем с изучения правил записи делимого, делителя, всех промежуточных выкладок и результатов при делении натуральных чисел столбиком. Сразу скажем, что письменно выполнять деление столбиком удобнее всего на бумаге с клетчатой разлиновкой – так меньше шансов сбиться с нужной строки и столбца. 

Сначала в одной строке слева направо записываются делимое и делитель, после чего между записанными числами изображается символ вида .

Например, если делимым является число 6105, а делителем 55, то их правильная запись при делении в столбик будет такой:

Посмотрите на следующую схему, иллюстрирующую места для записи делимого, делителя, частного, остатка и промежуточных вычислений при делении столбиком:

Из приведенной схемы видно, что искомое частное (или неполное частное при делении с остатком) будет записано ниже делителя под горизонтальной чертой.

А промежуточные вычисления будут вестись ниже делимого, и нужно заранее позаботиться о наличии места на странице.

При этом следует руководствоваться правилом: чем больше разница в количестве знаков в записях делимого и делителя, тем больше потребуется места. 

Деление столбиком натурального числа на однозначное натуральное число, алгоритм деления столбиком.

Как делить в столбик лучше всего объяснить на примере. Вычислить:

512:8=?

Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:

Их частное (результат) будем записывать под делителем. У нас это цифра 8.

     1. Определяем неполное частное. Сначала мы смотрим на первую слева цифру в записи делимого. Если число, определяемое этой цифрой, больше делителя, то в следующем пункте нам предстоит работать с этим числом.

Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого, и работать дальше с числом, определяемым двумя рассматриваемыми цифрами.

Для удобства выделим в нашей записи число, с которым мы будем работать.

     2. Берём 5. Цифра 5 меньше 8, значит нужно взять еще одну цифру из делимого. 51 больше 8. Значит. это неполное частное. Ставим точку в частном (под уголком делителя). 

После 51 стоит только одно цифра 2. Значит и добавляем в результат ещё одну точку.

     3. Теперь, вспоминая таблицу умножения на 8, находим ближайшее к 51 произведение → 6 х 8 = 48 → записываем цифру 6 в частное:

Записываем 48 под 51 (если умножить 6 из частного на 8 из делителя, получим 48).

Внимание! При записи под неполным частным самая правая цифра неполного частного должна стоять над самой правой цифрой произведения.

     4. Между 51 и 48 слева поставим «-» (минус). Вычтем по правилам вычитания в столбик 48 и под чертой запишем результат.

Однако, если результатом вычитания является нуль, то его не нужно записывать (если только вычитание в этом пункте не является самым последним действием, полностью завершающим процесс деления столбиком). 

В остатке получилось 3. Сравним остаток с делителем. 3 меньше 8.

Внимание! Если остаток получился больше делителя, значит мы ошиблись в расчете и есть произведение более близкое, чем то, которое взяли мы.

     5. Теперь под горизонтальной чертой справа от находящихся там цифр (или справа от места, где мы не стали записывать нуль) записываем цифру, расположенную в том же столбце в записи делимого. Если же в записи делимого в этом столбце нет цифр, то деление столбиком на этом заканчивается.

Число 32 больше 8. И опять по таблице умножения на 8, найдем ближайшее произведение → 8 x 4 = 32:

В остатке получился ноль. Значит, числа разделились нацело (без остатка). Если после последнего вычитания получается ноль, а цифр больше не осталось, то это остаток. Его дописываем к частному в скобках (например, 64(2) ).

Деление столбиком многозначных натуральных чисел.

Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.

Например, 1976 разделим на 26. 

  • Число 1 в старшем разряде меньше 26, поэтому рассмотрим число, составленное из цифр двух старших разрядов – 19.
  • Число 19 также меньше 26, поэтому рассмотрим число, составленное из цифр трех старших разрядов – 197.
  • Число 197 больше 26, делим 197 десятков на 26: 197 : 26 = 7 (15 десятков осталось).
  • Переводим 15 десятков в единицы, добавляем 6 единиц из разряда единиц, получаем 156.
  • 156 делим на 26, получаем 6.

Значит, 1976 : 26 = 76.

Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.

Деление с десятичной дробью в частном

Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.

Например, 64 разделим на 5.

  • 6 десятков делим на 5, получаем 1 десяток и 1 десяток в остатке.
  • Оставшийся десяток переводим в единицы, добавляем 4 из разряда единиц, получаем 14.
  • 14 единиц делим на 5, получаем 2 единицы и 4 единицы в остатке.
  • 4 единицы переводим в десятые, получаем 40 десятых.
  • 40 десятых делим на 5, получаем 8 десятых.

Значит, 64 : 5 = 12,8

Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.

Источник: https://www.calc.ru/1455.html

Деление

Как можно поделить

В этом разделе познакомимся с делением и узнаем, что деление – это математическая операция, обратная умножению.

Умножение – это последовательное сложение чисел, а деление – это последовательное вычитание чисел.

В математике существует знак для умножения – это точка ( • ) посередине строки между числами, которые нужно перемножить, а для деления существует особый знак – это две точки ( : ) между числами, которые нужно поделить между собой.

Как ёжикам поделить между собой яблоки поровну?

Нужно воспользоваться действием деления и узнать, сколько раз по 3 содержится в 6.

1) 6 : 3 = 2 (яб.) – мы узнали, сколько яблок получит каждый ёжик.

2) 6 : 2 = 3 (ёж.) – мы узнали, сколько ёжиков получат по 2 яблока.

3) 2 • 3 = 6 (яб.) – мы узнали, сколько яблок нужно, чтобы у каждого из трёх ёжиков было по 2 яблока.

Любой пример на умножение можно представить двумя примерами на деление.

Например, для выражения 6 • 4 = 24 есть два обратных выражения:

24 : 4 = 6 – нужно из 24 вычесть число 4 ровно 6 раз.

24 : 6 = 4 – нужно из 24 вычесть число 6 ровно 4 раз.

Числа при делении

При делении, как и при другом математическом действии, каждое число имеет свое название.

Число, которое делят, называется делимое.

Число, на которое делят, называется делитель.

Результат деления называется частное.

Чтение числовых выражений

24 : 6 = 4

Этот пример можно прочитать по-разному.

  • 24 разделить на 6 равняется 4.
  • 24 уменьшить в 6 раз – получится 4.
  • Делимое – 24, делитель – 6, частное – 4.
  • Частное от деления числа 24 на 6 равно 4.

Деление на 0

Деление числа само на себя

Чётные и нечётные числа

Числа, которые делятся на 2 без остатка, назы­ваются чётными, а числа, которые не делятся на 2 без остатка, называются нечётными.

Чётные: 6, 22 44, 60, 74, 82, 96

Нечётные: 7, 13, 21, 37, 45, 97

Для примера решим задачу:

В магазине было 8 котят, а лисичек в 4 раза меньше. Сколько было лисичек?

составим схему:

Значит, чтобы узнать, сколько было лисичек, нужно 8 : 4 = 2 (л.)

Во сколько раз больше? Во сколько раз меньше?

Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?

Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

8 : 2 = 4 (раза)

Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Табличное деление

Внетабличное деление

Деление с остатком

Деление суммы на число

Деление на однозначное число

Деление чисел, оканчивающихся нулями

Свойства деления

Правило встречается в следующих упражнениях:

2 класс

Страница 57. Вариант 2. № 3, Моро, Волкова, Проверочные работы

Страница 59. Вариант 2. № 1, Моро, Волкова, Проверочные работы

Страница 65. Вариант 2. Тест 1, Моро, Волкова, Проверочные работы

Страница 66. Вариант 1. Тест 2, Моро, Волкова, Проверочные работы

Страница 67. Вариант 2. Тест 2, Моро, Волкова, Проверочные работы

Страница 58, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 64, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 79, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 85, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 71, Моро, Волкова, Рабочая тетрадь, часть 2

3 класс

Страница 19, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 41, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 93, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 24, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 59, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 72, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 54. Вариант 1. Тест 2, Моро, Волкова, Проверочные работы

Страница 13, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 14, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 48, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

4 класс

Страница 29, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 72, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 81, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 8, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 28, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 49, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 79, Моро, Волкова, Рабочая тетрадь, часть 1

Страница 88. Вариант 1. Итоговый тест за курс начальной школы, Моро, Волкова, Проверочные работы

Страница 24, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 64, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

5 класс

Задание 441, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 673, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 818, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 36, Мерзляк, Полонский, Якир, Учебник

Упражнение 1, Мерзляк, Полонский, Якир, Учебник

Упражнение 520, Мерзляк, Полонский, Якир, Учебник

Упражнение 656, Мерзляк, Полонский, Якир, Учебник

Упражнение 657, Мерзляк, Полонский, Якир, Учебник

Упражнение 673, Мерзляк, Полонский, Якир, Учебник

Упражнение 1050, Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 1211, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1222, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1262, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1266, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

© budu5.com, 2021

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/1184

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.