Координаты точек на координатной плоскости

Содержание

Координатная плоскость – определение расположения точек и фигур

Координаты точек на координатной плоскости

С помощью этой системы осуществляется решение задач в геометрии, а также в других научных дисциплинах.

Кроме того, принцип указания точного адреса объекта с помощью двух величин получил широкое распространение во многих отраслях человеческой деятельности.

Системы координат

Под понятием координат в повседневной жизни понимается упорядоченный набор слов, цифр и прочих знаков, позволяющий определить местоположение человека, здания или другого объекта. Эти знания необходимы для ориентирования в современном обществе и организации любой человеческой деятельности.

Трудно даже представить себе мир без системы адресов и нумерации.

Примеры использования:

  • почтовый адрес;
  • номер места в театре, автобусе или самолёте;
  • обозначение положения фигур на шахматной доске;
  • географическая широта и долгота.

Таким образом, система координат необходима не только в математике.

Она буквально пронзает всю человеческую жизнь.

Без применения этих научных знаний люди не смогли бы значительно отдалиться от животных и первобытных предков.

Некоторые области применения:

  1. Геометрия довольно часто пользуется методикой нахождения точки на координатной плоскости или в пространстве.
  2. Математика — построение графиков функций.
  3. География использует собственные координаты (широта и долгота).
  4. Астрономия определяет положение небесных объектов во вселенной.

По определению любая координатная система представляет собой ряд идентификационных данных, которые позволяют узнать положение точки или фигуры в пространстве, а также дают возможность проследить её перемещение.

Наибольшее распространение получила прямоугольная система координат, которую ещё называют декартовой, по имени создателя Рене Декарта. Её популярность основана на простоте и универсальности.

Другие виды координат:

  • полярные;
  • цилиндрические;
  • сферические;
  • косоугольные;
  • биангулярные;
  • биполярные;
  • конические;
  • бицентрические;
  • координаты Риндлера;
  • бицилиндрические;
  • параболические;
  • тороидальные;
  • проективные;
  • трилинейные;
  • эллипсоидальные.

Видя такое множество, можно смело сказать, что задать координаты на плоскости, в двумерном или трёхмерном пространстве можно бесчисленным количеством способов. Для решения определённой задачи стоит выбирать наиболее подходящий метод из всех имеющихся.

Координатная плоскость

Прямоугольная или квадратная система координат была изобретена ещё в XVII веке. Благодаря своей невероятной гениальности, простоте и понятности для большинства людей, она получила широчайшее распространение и с успехом применяется до сих пор.

Чтобы построить фигуру на координатной плоскости, нужно изобразить две линии пересекающиеся под прямым углом:

Точка пересечения O является началом отсчёта, из неё откладываются все значения в координатной системе. Стоит помнить, что вправо и вверх идут положительные величины, а влево и вниз — отрицательные.

Таким образом, две оси образуют квадранты координатной плоскости (четверти). В зависимости от того, в каком из четырёх образовавшихся сегментов находится точка или фигура, будет изменяться её значение.

Местоположение любой точки на координатной плоскости определяется при помощи двух числовых показателей. Первый — это абсцисса x, он откладывается по горизонтали и равен отрезку ОВ. Второй — ордината y, откладывающаяся по вертикали и совпадающая с отрезком ОС.

Выходит, что для задания и записи точного местоположения любой точки А необходимо измерить её расстояние до оси абсцисс и ординат. Схематическая запись координат будет выглядеть как А (x, y) или xА, xB, возможны и другие варианты.

Обычно на практике применяют правостороннюю координатную систему. В этом случае адрес точки принимает положительное значение лишь в правом верхнем квадранте I, образованном правой частью оси ординат (X) и верхней частью оси абсцисс (Y). Иногда бывают ситуации, в которых использование другой ориентации является более целесообразным.

Не стоит считать, что декартовая координатная система может применяться только на плоскости. Она вполне подходит для любого пространства, имеющего конечную размеренность. Всё становиться более сложным — для каждого дополнительного измерения создаётся новая ось.

Для нахождения местоположения точек в привычном трёхмерном пространстве, помимо абсциссы и ординаты, вводится третья координата, именуемая аппликатором (z).

Для этого через точку O проводится дополнительная ось, изображающая третье измерение и являющаяся перпендикулярной к двум остальным.

В этом случае создаётся своеобразная объёмная решётка, а пространство разделяется линиями на 8 частей — октантов.

При рисовании такой системы на листе применяется проекция на плоскость. Третья ось проводится под углом в 45 градусов к остальным, создавая иллюзию трёхмерного пространства.

Историческая справка

Сегодня каждый школьник, учащийся в шестом классе, не только слышал про координатную плоскость, но и знает правило построения простейших фигур в двумерном пространстве. Но так было не всегда.

Необходимость в определении точного местоположения объектов возникла очень давно. Скорее всего, ещё в древнейшие времена существовали примитивные методы записи координат. Более точные системы возникли в Древней Греции. Их появление было связано с потребностью в картографии.

Достоверно известно, что составитель первой карты Анаксимандр Милетский пользовался географической долготой и широтой, запись которых была основана на прямоугольной проекции.

Незадолго до начала нашей эры древнегреческий учёный по имени Гиппарх выдвинул замечательную идею, заключающуюся в опоясывании земного шара параллелями и меридианами и записи информации о положении объектов в виде двух чисел.

В Египте на стене одной из усыпальниц археологами был обнаружен рисунок, состоящий из клеточек и представляющий собой координатную сетку.

Автором прямоугольной системы координат на плоскости является математик Рене Декарт, живший во Франции XVII века. История этого гениального открытия весьма забавна. Дело в том, что в театре тех лет ещё не существовало привычной для современной публики нумерации мест.

Из-за этого нередко возникала страшная путаница, ссоры, драки и даже дуэли. Будучи талантливым математиком, Декарт предложил новый способ обозначения, базирующийся на двух номерах — ряда и кресла.

Это изобретение избавило зрителей от ненужных проблем и произвело настоящий фурор в обществе.

Позже учёный изложил принципы плоскости координат, а также прочие открытия в своём фундаментальном труде «Геометрия». Первые попытки применить метод Декарта к трёхмерному пространству были предприняты в XVIII веке Леонардом Эйлером.

Сегодня при помощи декартовой системы координат можно задать не только расположение простой фигуры, например, треугольника, на плоскости, но и описать любой сложный предмет и его перемещение в пространстве. Метод нашёл широкое применение во многих электронных устройствах и графических программах.

С развитием современных технологий определение географических координат очень упростилось.

Достаточно запустить одно из навигационных приложений или войти в специальный онлайн-сервис, и местоположение будет указано с максимальной точностью.

Поверхность земли имеет сферическую форму, из-за этого географическая система координат имеет свои особенности.

Обозначение любой точки на планете осуществляется при помощи набора цифробуквенных обозначений:

  • широта бывает северная и южная;
  • долгота — восточная и западная;
  • высота над уровнем моря.

Все точки одной широты соединяются параллелями. На экваторе широта составляет 0 градусов, а на полюсе 90. Меридианы соединяют точки с одним и тем же показателем долготы и сходятся на полюсах.

Источник: https://nauka.club/matematika/koordinatnaya-ploskost.html

Урок 79. декартова система координат на плоскости – Математика – 6 класс – Российская электронная школа

Координаты точек на координатной плоскости

Математика

6 класс

Урок № 79

Декартова система координат на плоскости

Перечень рассматриваемых вопросов:

  • прямоугольная система координат;
  • координатная плоскость;
  • координатная ось, координата точки;
  • изображение точек с действительными координатами на плоскости.

Тезаурус

Координатная плоскость. Зададим на плоскости две оси координат, расположив их под прямым углом. Координатные оси пересекаются в точке, являющейся началом отсчёта для каждой из них.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Оси координат разделяют плоскость на 4 угла, которые называются координатными четвертями.

Координаты точки М (х; у), где х – абсцисса, у – ордината точки.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Зададим на плоскости две оси координат, расположив их под прямым углом. Единичные отрезки осей возьмём равными друг другу.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Положительное направление на осях указывается стрелкой.

Точку пересечения осей называют началом координат.

Оси взаимно перпендикулярны, поэтому заданную таким образом систему координат называют прямоугольной.

Оси координат разделяют плоскость на 4 угла – координатные четверти. Обозначают римскими цифрами как показано на рисунке.

Одним из первых, кто начал широко использовать прямоугольную систему координат в своих исследованиях, был французский философ и математик Рене Декарт, поэтому её часто называют декартовой системой координат.

Пусть A – произвольная точка координатной плоскости. Проведём через точку A прямые, параллельные осям координат.

Прямая, параллельная оси y, пересечёт ось x в точке A1, а прямая, параллельная оси x, пересечёт ось y в точке A2. Координату точки A1 на оси x называют абсциссой точки A.

Координату точки A2 на оси y называют ординатой точки A. Абсциссу x и ординату y точки A называют координатами точки A.

Координаты точки, записывают в круглых скобках рядом с буквой, обозначающей эту точку: М (х; у).

Важно!

х – первая координата

у – вторая координата

Поменять местами х и у нельзя – получится другая точка.

Поэтому пару координат (x; y) точки A называют упорядоченной парой чисел.

Если на плоскости задана прямоугольная система координат хOу, то:

– каждой точке плоскости поставлена в соответствие упорядоченная пара чисел (координаты точки);

– разным точкам плоскости соответствуют разные упорядоченные пары чисел;

– каждая упорядоченная пара чисел соответствует одной точке плоскости.

То есть установлено взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел.

Алгоритм построения точки на координатной плоскости

Построим точку А(3; 6).

Введём прямоугольную систему координат.

На каждой оси откладываем заданные координаты х и у (x > 0 и y > 0, значит, точка A расположена в I координатной четверти).

Проводим перпендикуляры к оси х и оси у.

Точка их пересечения – искомая точка.

В(– 4; 5) – имеет отрицательную абсциссу и положительную ординату, значит, расположена во II четверти.

С(– 8; – 4) – имеет обе отрицательные координаты, значит, расположена в III четверти.

D(9; – 2) – имеет положительную абсциссу и отрицательную ординату, значит, расположена в IV четверти.

F(6; 0), E(– 5; 0) – точки лежат на оси абсцисс.

H(0; – 5) – точка лежит на оси ординат.

O(0; 0) – начальная точка системы координат.

В географии положение объектов на земной поверхности определяется двумя координатами: широтой и долготой.

В концертном зале своё кресло можно найти по номеру ряда и места.

В шахматах каждой клетке соответствует буква столбца и цифра ряда.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Построить прямую АВ, если А(3; 2), В(– 3; – 4).

Найти:

1) координаты точек пересечения прямой AB с осями;

2) координаты середины отрезка AB.

Шаг 1. Строим точки А и В по их координатам.

Шаг 2. Проводим прямую АВ.

Шаг 3. Находим точки пересечения с осями координат, обозначаем их буквами M и N. Определяем их координаты:

М (1; 0), N (0; – 1).

Шаг 4. Находим по графику середину отрезка АВ, это точка N (0; – 1).

Ответ: координаты точек пересечения прямой AB с осями: М (1; 0), N (0; – 1), координаты середины отрезка AB: N (0; – 1).

Тип 2. Нарисуйте фигуру, последовательно соединяя точки

(0; 4), (– 2; – 2), (3; 2), (– 3; 2), (2; – 4), (0; 4).

Источник: https://resh.edu.ru/subject/lesson/6921/conspect/

Урок 46 Бесплатно Координатная плоскость

Координаты точек на координатной плоскости

Метод координат- это способ определения местоположения точки или тела с помощью чисел и других символов и некоторой системы координат.

Координаты и метод координат применяются и используются в различных сферах нашей жизни.

Например, координаты на картах и планах задаются числами. Для любой точки на поверхности Земли можно определить пару чисел (широту и долготу).

Координаты врача в больнице задаются номером этажа и номером кабинета.

Место в зрительном зале определяется парой чисел: номером ряда и номером кресла в ряду.

Место в поезде, указанное в билете, определяют два числа: номер вагона и номер полки.

Некоторый образ прямоугольной координатной системы прослеживается в знаменитых играх, таких как шахматы и «Морской бой».

На шахматной доске каждый квадрат имеет свои координаты: буквы латинского алфавита и цифры.

С помощью названия столбца и названия ряда (подобно координатным осям) можно определить положение шахматной фигур на игровом поле – их координаты.

Похожая ситуация складывается в игре «Морской бой».

На игровом поле (поле состоит из квадрата 10х10, разлинованного в клетку) изображаются условные корабли в виде прямоугольников и квадратов.

Задача игроков определить место положения кораблей, тем самым вычеркнуть – «уничтожить» их с поля соперника.

Такое же поле (10х10) чертится пустым, чтобы отмечать на нем координаты сбитых кораблей соперника.

Строки и столбцы задают нам подобие координатных осей, а каждый квадратик поля имеет свою координату: букву и число.

Применяется метод координат в создании различного рода таблиц.

Таблицы часто содержат большое количество упорядоченной информации.

Опять же, строки и столбцы задают нам подобие координатных осей, а координаты каждой ячейки таблицы задаются парой символов или чисел (в зависимости от специфики таблицы).

Например, таблица расписания уроков.

Конкретному времени и классу соответствует определенный урок.

Существуют специальные компьютерные программы, с помощью которых можно создавать таблицы, производить вычисления и анализировать данные.

Любой ячейке в такой таблице соответствует два символа, которые однозначно определяют ее, – это пара «число-буква».

Применение набора чисел для описания положения любой точки очень удобный инструмент.

Системы координат широко используются в современных науках и в технике.

В геодезии и картографии широта и долгота однозначно определяется положением на поверхности Земного шара.

Прямоугольная система координат применяется в военной типографии: земная поверхность на военных картах условно разбита на прямоугольники определенных размеров.

Местоположение точки на такой карте отмечается, как в Декартовой системе координат.

Кроме географических объектов военная карта несет информацию о составе войск, их дислокации и расположении, о количестве и расположении боевой техники, о составе войск, боевых действиях, происходящих и планируемых, и многое другое.

В космонавтике и астрономии с помощью особых координатных систем определяют положение звезд и иных небесных тел, вспомогательных точек на небесной сфере, а также положение и траектории летательных аппаратов.

В авиации наиболее часто используют одновременно три различные системы координат: земная, связанная и скоростная.

Земная жестко связана с Землей, применяется для определения летательного аппарата (как точки) относительно земных объектов.

Для расчета взлета, посадки и полетов на близкие расстояния используется прямоугольная система координат, в иных случаях используется более сложный расчет и система координат.

Связанная система координат служит для определения положения объектов внутри летательного аппарата.

Скоростная используется для определения положения летательного аппарата относительно воздушного потока и расчета аэродинамических параметров судна.

В морской навигации (мореплавании, судоходстве) географические координаты замеряют с помощью координатной сетки, которая состоит из взаимно параллельных линий.

Горизонтальные прямые – это линии параллелей.

Вертикальные прямые – это линии меридианов.

На левом крайнем и правом крайнем меридиане нанесена шкала географической широты точки.

На верхней и нижней параллели нанесены шкалы для измерения долготы точки.

Современные навигационные устройства, конечно, во многом превосходят бумажные из прошлого, так как они способны найти не только координаты точки, но и проложить безопасный маршрут до нее.

Даже и в этом случае нужна карта и система координат только электронная.

Программирование станков с программным управлением также тесно связана с применением системы координат.

Перемещение рабочих частей станка в пространстве при изготовлении детали задается с помощью прямоугольной системы координат.

Как вы смогли убедиться, координаты и метод координат широко используются во многих сферах нашей жизни.

Применение метода координат позволяет определить положение объекта как на плоскости, так и в пространстве.

Чтобы определить положение тела на плоскости, объект представляют точкой и находят координату этой точки на двух осях пространства.

Рассмотрим алгоритмы решения математических задач с помощью прямоугольной декартовой системы координат на плоскости.

Определение координат заданных точек на координатной плоскости.

Если на координатной плоскости задана некоторая точка А и требуется найти ее координаты, то это делается следующим образом.

Через точку А проводят две прямые: одна параллельная оси Оу, вторая – оси Ох.

Прямая, параллельная оси Оу, пересечет ось Ох в точке, которая является абсциссой точки А.

Прямая параллельная оси Ох, пересечет ось Оу в точке, которая является ординатой точки А.

Координата точки А записывается так:

А(хА;уА)

хА– абсцисса точки А (координата по оси Ох).

уА– ордината точки А (координата по оси Оу).

Построение точки на координатной плоскости по заданным координатам.

Чтобы построить точки на плоскости по заданным координатам, действуют в обратном порядке.

Отложить на оси Ох абсциссу точки А и провести перпендикулярную прямую оси Ох через отложенную координату хА.

На оси Оу отложить ординату точки А и провести перпендикулярную прямую оси Оу через отложенную координату уА.

На пересечении полученных перпендикулярных прямых получится точка А(хА; уА).

Источник: https://ladle.ru/education/matematika/6class/koordinatnaya-ploskost

Декартовы координаты точек плоскости. Уравнение окружности

Координаты точек на координатной плоскости

Справочник по математикеАлгебраКоординатная плоскость

      Определение 1. Числовой осью (числовой прямой, координатной прямой)   Ox   называют прямую линию, на которой точка   O   выбрана началом отсчёта (началом координат) (рис.1), направление

O → x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Рис.1

      Определение 2. Отрезок, длина которого принята за единицу длины, называют масштабом.

      Каждая точка числовой оси имеет координату, являющуюся вещественным числом. Координата точки   O   равна нулю. Координата произвольной точки   A ,   лежащей на луче   Ox ,   равна длине отрезка   OA .   Координата произвольной точки   A   числовой оси, не лежащей на луче   Ox ,   отрицательна, а по абсолютной величине равна длине отрезка   OA .

Прямоугольная декартова система координат на плоскости

      Определение 3.

Прямоугольной декартовой системой координат   Oxy   на плоскости называют две взаимно перпендикулярных числовых оси   Ox   и   Oy   с одинаковыми масштабами и общим началом отсчёта в точке   O ,   причём таких, что поворот от луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении против хода часовой стрелки (рис.2).

Рис.2

      Замечание.

Прямоугольную декартову систему координат   Oxy ,   изображённую на рисунке 2, называют правой системой координат, в отличие от левых систем координат, в которых поворот луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

      Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат   Oxy ,   то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть   A   – произвольная точка плоскости. Опустим из точки   A   перпендикуляры   AA1   и   AA2   на прямые   Ox   и   Oy   соответственно (рис.3).

Рис.3

      Определение 4. Абсциссой точки   A   называют координату точки   A1   на числовой оси   Ox ,   ординатой точки   A   называют координату точки   A2   на числовой оси   Oy .

      Обозначение. Координаты (абсциссу и ординату) точки   A   в прямоугольной декартовой системе координат   Oxy   (рис.4) принято обозначать   A (x ; y)   или   A = (x ; y).

Рис.4

      Замечание.

Точка   O ,   называемая началом координат, имеет координаты   O (0 ; 0) .

      Определение 5 . В прямоугольной декартовой системе координат   Oxy   числовую ось   Ox   называют осью абсцисс, а числовую ось   Oy   называют осью ординат (рис. 5).

      Определение 6. Каждая прямоугольная декартова система координат делит плоскость на   4   четверти (квадранта), нумерация которых показана на рисунке 5.

Рис.5

      Определение 7. Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью.

      Замечание.

Ось абсцисс задаётся на координатной плоскости уравнением   y = 0 ,   ось ординат задаётся на координатной плоскости уравнением   x = 0.

Формула для расстояния между двумя точками координатной плоскости

      Утверждение 1. Расстояние между двумя точками координатной плоскости

A1 (x1 ; y1)   и   A2 (x2 ; y2)

вычисляется по формуле

      Доказательство. Рассмотрим рисунок 6.

Рис.6

      Поскольку в прямоугольном треугольнике   A1A2B   длина катета   A1B   равна   | x2 – x1|    а длина катета   A2B   равна   | y2 – y1| ,   то по теореме Пифагора

| A1A2|2 == ( x2 – x1)2 + ( y2 – y1)2 .(1)

     Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

      Рассмотрим на координатной плоскости   Oxy   (рис. 7) окружность радиуса   R   с центром в точке   A0 (x0 ; y0) .

Рис.7

      Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

( x – x0)2 + ( y – y0)2 = R2.

Уравнение (2) и есть искомое уравнение окружности радиуса   R   с центром в точке   A0 (x0 ; y0) .

      Следствие. Уравнение окружности радиуса   R   с центром в начале координат имеет вид

x2 + y2 = R2.

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник: https://www.resolventa.ru/demo/him/diagege.htm

Координаты на плоскости

Координаты точек на координатной плоскости

Каждый объект (например, дом, место в зрительном зале, точка на карте) имеет свой упорядоченный адрес (координаты), который имеет числовое или буквенное обозначение.

Математики разработали модель, которая позволяет определять положение объекта и называется координатной плоскостью.

Чтобы построить координатную плоскость нужно провести $2$ перпендикулярные прямые, на конце которых указываются с помощью стрелок направления «вправо» и «вверх». На прямые наносятся деления, а точка пересечения прямых является нулевой отметкой для обеих шкал.

Определение 1

Горизонтальная прямая называется осью абсцисс и обозначается х, а вертикальная прямая называется осью ординат и обозначается у.

Две перпендикулярные оси х и у с делениями составляют прямоугольную, или декартовую, систему координат, которую предложил французский философ и математик Рене Декарт.

Координатная плоскость

Координаты точки

Точка на координатной плоскости определяется двумя координатами.

Чтобы определить координаты точки $A$ на координатной плоскости нужно через нее провести прямые, которые будут параллельны координатным осям (на рисунке выделены пунктирной линией). Пересечение прямой с осью абсцисс дает координату $x$ точки $A$, а пересечение с осью ординат дает координату у точки $A$. При записи координат точки сначала записывается координата $x$, а затем координата $y$.

Точка $A$ на рисунке имеет координаты $(3; 2)$, а точка $B (–1; 4)$.

Для нанесения точки на координатную плоскость действуют в обратном порядке.

Построение точки по заданным координатам

Пример 1

На координатной плоскости построить точки $A(2;5)$ и $B(3; –1).$

Решение.

Построение точки $A$:

  • отложим число $2$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси у отложим число $5$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $A$ с координатами $(2; 5)$.

Построение точки $B$:

  • отложим на оси $x$ число $3$ и проведем перпендикулярную оси х прямую;
  • на оси $y$ отложим число $(–1)$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $B$ с координатами $(3; –1)$.

Пример 2

Построить на координатной плоскости точки с заданными координатами $C (3; 0)$ и $D(0; 2)$.

Решение.

Построение точки $C$:

  • отложим число $3$ на оси $x$;
  • координата $y$ равна нулю, значит точка $C$ будет лежать на оси $x$.

Построение точки $D$:

  • отложим число $2$ на оси $y$;
  • координата $x$ равна нулю, значит, точка $D$ будет лежать на оси $y$.

Замечание 1

Следовательно, при координате $x=0$ точка будет лежать на оси $y$, а при координате $y=0$ точка будет лежать на оси $x$.

Пример 3

Определить координаты точек A, B, C, D.$

Решение.

Определим координаты точки $A$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Таким образом, получаем, что точка $A (1; 3).$

Определим координаты точки $B$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Получаем, что точка $B (–2; 4).$

Определим координаты точки $C$. Т.к. она расположена на оси $y$, то координата $x$ этой точки равна нулю. Координата у равна $–2$. Таким образом, точка $C (0; –2)$.

Определим координаты точки $D$. Т.к. она находится на оси $x$, то координата $y$ равна нулю. Координата $x$ этой точки равна $–5$. Таким образом, точка $D (5; 0).$

Пример 4

Построить точки $E(–3; –2), F(5; 0), G(3; 4), H(0; –4), O(0; 0).$

Решение.

Построение точки $E$:

  • отложим число $(–3)$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси $y$ отложим число $(–2)$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $E (–3; –2).$

Построение точки $F$:

  • координата $y=0$, значит, точка лежит на оси $x$;
  • отложим на оси $x$ число $5$ и получим точку $F(5; 0).$

Построение точки $G$:

  • отложим число $3$ на оси $x$ и проведем перпендикулярную прямую к оси $x$;
  • на оси $y$ отложим число $4$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $G(3; 4).$

Построение точки $H$:

  • координата $x=0$, значит, точка лежит на оси $y$;
  • отложим на оси $y$ число $(–4)$ и получим точку $H(0; –4).$

Построение точки $O$:

  • обе координаты точки равны нулю, значит, точка лежит одновременно и на оси $y$, и на оси $x$, следовательно является точкой пересечения обеих осей (началом координат).

Источник: https://spravochnick.ru/matematika/racionalnye_chisla/koordinaty_na_ploskosti/

Координатная плоскость: что это такое? Как отмечать точки и строить фигуры на координатной плоскости?

Координаты точек на координатной плоскости

Математика – наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость – это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат – строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты – одну координату буквенную, вторую – цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось – абсцисс – горизонтальная. Она обозначается как (Ox). Вторая ось – ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy).

Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0.

Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината – положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной – ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Далее мы поговорим подробнее о построении системы и непосредственно нанесении точек и фигур.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная – ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Далее на каждой оси указывают направление и подписывают их с помощью общепринятых обозначений x и y. Также отмечается точка пересечения осей и подписывается цифрой 0.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая – по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy. Далее провести воображаемые линии от данных обозначений и найти место их пересечения – это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами геометрические фигуры. Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное – углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка – центр окружности, вторая – точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость – это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, – умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

Источник: https://FB.ru/article/150035/koordinatnaya-ploskost-chto-eto-takoe-kak-otmechat-tochki-i-stroit-figuryi-na-koordinatnoy-ploskosti

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.