Номера плоскостей на системе координат

Урок 79. декартова система координат на плоскости – Математика – 6 класс – Российская электронная школа

Номера плоскостей на системе координат

Математика

6 класс

Урок № 79

Декартова система координат на плоскости

Перечень рассматриваемых вопросов:

  • прямоугольная система координат;
  • координатная плоскость;
  • координатная ось, координата точки;
  • изображение точек с действительными координатами на плоскости.

Тезаурус

Координатная плоскость. Зададим на плоскости две оси координат, расположив их под прямым углом. Координатные оси пересекаются в точке, являющейся началом отсчёта для каждой из них.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Оси координат разделяют плоскость на 4 угла, которые называются координатными четвертями.

Координаты точки М (х; у), где х – абсцисса, у – ордината точки.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Зададим на плоскости две оси координат, расположив их под прямым углом. Единичные отрезки осей возьмём равными друг другу.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Положительное направление на осях указывается стрелкой.

Точку пересечения осей называют началом координат.

Оси взаимно перпендикулярны, поэтому заданную таким образом систему координат называют прямоугольной.

Оси координат разделяют плоскость на 4 угла – координатные четверти. Обозначают римскими цифрами как показано на рисунке.

Одним из первых, кто начал широко использовать прямоугольную систему координат в своих исследованиях, был французский философ и математик Рене Декарт, поэтому её часто называют декартовой системой координат.

Пусть A – произвольная точка координатной плоскости. Проведём через точку A прямые, параллельные осям координат.

Прямая, параллельная оси y, пересечёт ось x в точке A1, а прямая, параллельная оси x, пересечёт ось y в точке A2. Координату точки A1 на оси x называют абсциссой точки A.

Координату точки A2 на оси y называют ординатой точки A. Абсциссу x и ординату y точки A называют координатами точки A.

Координаты точки, записывают в круглых скобках рядом с буквой, обозначающей эту точку: М (х; у).

Важно!

х – первая координата

у – вторая координата

Поменять местами х и у нельзя – получится другая точка.

Поэтому пару координат (x; y) точки A называют упорядоченной парой чисел.

Если на плоскости задана прямоугольная система координат хOу, то:

– каждой точке плоскости поставлена в соответствие упорядоченная пара чисел (координаты точки);

– разным точкам плоскости соответствуют разные упорядоченные пары чисел;

– каждая упорядоченная пара чисел соответствует одной точке плоскости.

То есть установлено взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел.

Алгоритм построения точки на координатной плоскости

Построим точку А(3; 6).

Введём прямоугольную систему координат.

На каждой оси откладываем заданные координаты х и у (x > 0 и y > 0, значит, точка A расположена в I координатной четверти).

Проводим перпендикуляры к оси х и оси у.

Точка их пересечения – искомая точка.

В(– 4; 5) – имеет отрицательную абсциссу и положительную ординату, значит, расположена во II четверти.

С(– 8; – 4) – имеет обе отрицательные координаты, значит, расположена в III четверти.

D(9; – 2) – имеет положительную абсциссу и отрицательную ординату, значит, расположена в IV четверти.

F(6; 0), E(– 5; 0) – точки лежат на оси абсцисс.

H(0; – 5) – точка лежит на оси ординат.

O(0; 0) – начальная точка системы координат.

В географии положение объектов на земной поверхности определяется двумя координатами: широтой и долготой.

В концертном зале своё кресло можно найти по номеру ряда и места.

В шахматах каждой клетке соответствует буква столбца и цифра ряда.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Построить прямую АВ, если А(3; 2), В(– 3; – 4).

Найти:

1) координаты точек пересечения прямой AB с осями;

2) координаты середины отрезка AB.

Шаг 1. Строим точки А и В по их координатам.

Шаг 2. Проводим прямую АВ.

Шаг 3. Находим точки пересечения с осями координат, обозначаем их буквами M и N. Определяем их координаты:

М (1; 0), N (0; – 1).

Шаг 4. Находим по графику середину отрезка АВ, это точка N (0; – 1).

Ответ: координаты точек пересечения прямой AB с осями: М (1; 0), N (0; – 1), координаты середины отрезка AB: N (0; – 1).

Тип 2. Нарисуйте фигуру, последовательно соединяя точки

(0; 4), (– 2; – 2), (3; 2), (– 3; 2), (2; – 4), (0; 4).

Источник: https://resh.edu.ru/subject/lesson/6921/conspect/

Ось абсцисс и ординат. Прямоугольная система координат

Номера плоскостей на системе координат

Французский математик Рене Декарт преддложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

А вот и координаты увлекательных уроков математики: на интерактивной платформе и в комфортном темпе! Запишите ребенка на бесплатный вводный урок в онлайн-школу Skysmart, чтобы закрыть пробелы по школьной программе и не бояться контрольных.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

Правила координат:

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Прямоугольная система координат в трехмерном пространстве

Трехмерное евклидово пространство состоит из трех взаимно перпендикулярных прямых: Ох, Оу, Оz, где Оz — ось аппликат. По направлению координатных осей есть разделение на правую и левую прямоугольные системы координат трехмерного пространства.

Оси координат пересекаются в точке О, которую называют началом. У каждой оси есть положительное направление, которое отмечается стрелкой.

Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой.

Объясняем на пальцах! Если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.

Также образуется левая система координат. Совмещать обе системы нет смысла, так как соответствующие оси не совпадут.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Пусть точка будет проекцией точки Mx на Ох, а My на Оу.

Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.

Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Координаты точки в трехмерном пространстве

Сформулируем определение точки М в трехмерном пространстве.

Пусть Mx, My, Mz — это проекции точки М на соответствующие оси Оx, Оy, Оz. Тогда значения этих точек на осях примут значения xM, yM, zM. Как это выглядит на координатных прямых:

Чтобы получить проекции точки М, нужно добавить перпендикулярные прямые Оx, Оy, Оz, продолжить их и изобразить в виде плоскостей, которые проходят через М. Так плоскости пересекутся в Mx, My, Mz.

У каждой точки трехмерного пространства есть свои данные (xM, yM, zM), которые являются координатами точки М.

xM, yM, zM — это числа, которые являются абсциссой, ординатой и аппликатой данной точки М.

Верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку М трехмерного пространства.

Ну все, вроде бы справились. А если не совсем — приходите разбираться с системой координат на веселых задачках в Skysmart. Будет увлекательно и интерактивно!

Источник: https://skysmart.ru/articles/mathematic/Os-abstsiss-i-ordinat

Урок 46 Бесплатно Координатная плоскость

Номера плоскостей на системе координат

Метод координат- это способ определения местоположения точки или тела с помощью чисел и других символов и некоторой системы координат.

Координаты и метод координат применяются и используются в различных сферах нашей жизни.

Например, координаты на картах и планах задаются числами. Для любой точки на поверхности Земли можно определить пару чисел (широту и долготу).

Координаты врача в больнице задаются номером этажа и номером кабинета.

Место в зрительном зале определяется парой чисел: номером ряда и номером кресла в ряду.

Место в поезде, указанное в билете, определяют два числа: номер вагона и номер полки.

Некоторый образ прямоугольной координатной системы прослеживается в знаменитых играх, таких как шахматы и «Морской бой».

На шахматной доске каждый квадрат имеет свои координаты: буквы латинского алфавита и цифры.

С помощью названия столбца и названия ряда (подобно координатным осям) можно определить положение шахматной фигур на игровом поле – их координаты.

Похожая ситуация складывается в игре «Морской бой».

На игровом поле (поле состоит из квадрата 10х10, разлинованного в клетку) изображаются условные корабли в виде прямоугольников и квадратов.

Задача игроков определить место положения кораблей, тем самым вычеркнуть – «уничтожить» их с поля соперника.

Такое же поле (10х10) чертится пустым, чтобы отмечать на нем координаты сбитых кораблей соперника.

Строки и столбцы задают нам подобие координатных осей, а каждый квадратик поля имеет свою координату: букву и число.

Применяется метод координат в создании различного рода таблиц.

Таблицы часто содержат большое количество упорядоченной информации.

Опять же, строки и столбцы задают нам подобие координатных осей, а координаты каждой ячейки таблицы задаются парой символов или чисел (в зависимости от специфики таблицы).

Например, таблица расписания уроков.

Конкретному времени и классу соответствует определенный урок.

Существуют специальные компьютерные программы, с помощью которых можно создавать таблицы, производить вычисления и анализировать данные.

Любой ячейке в такой таблице соответствует два символа, которые однозначно определяют ее, – это пара «число-буква».

Применение набора чисел для описания положения любой точки очень удобный инструмент.

Системы координат широко используются в современных науках и в технике.

В геодезии и картографии широта и долгота однозначно определяется положением на поверхности Земного шара.

Прямоугольная система координат применяется в военной типографии: земная поверхность на военных картах условно разбита на прямоугольники определенных размеров.

Местоположение точки на такой карте отмечается, как в Декартовой системе координат.

Кроме географических объектов военная карта несет информацию о составе войск, их дислокации и расположении, о количестве и расположении боевой техники, о составе войск, боевых действиях, происходящих и планируемых, и многое другое.

В космонавтике и астрономии с помощью особых координатных систем определяют положение звезд и иных небесных тел, вспомогательных точек на небесной сфере, а также положение и траектории летательных аппаратов.

В авиации наиболее часто используют одновременно три различные системы координат: земная, связанная и скоростная.

Земная жестко связана с Землей, применяется для определения летательного аппарата (как точки) относительно земных объектов.

Для расчета взлета, посадки и полетов на близкие расстояния используется прямоугольная система координат, в иных случаях используется более сложный расчет и система координат.

Связанная система координат служит для определения положения объектов внутри летательного аппарата.

Скоростная используется для определения положения летательного аппарата относительно воздушного потока и расчета аэродинамических параметров судна.

В морской навигации (мореплавании, судоходстве) географические координаты замеряют с помощью координатной сетки, которая состоит из взаимно параллельных линий.

Горизонтальные прямые – это линии параллелей.

Вертикальные прямые – это линии меридианов.

На левом крайнем и правом крайнем меридиане нанесена шкала географической широты точки.

На верхней и нижней параллели нанесены шкалы для измерения долготы точки.

Современные навигационные устройства, конечно, во многом превосходят бумажные из прошлого, так как они способны найти не только координаты точки, но и проложить безопасный маршрут до нее.

Даже и в этом случае нужна карта и система координат только электронная.

Программирование станков с программным управлением также тесно связана с применением системы координат.

Перемещение рабочих частей станка в пространстве при изготовлении детали задается с помощью прямоугольной системы координат.

Как вы смогли убедиться, координаты и метод координат широко используются во многих сферах нашей жизни.

Применение метода координат позволяет определить положение объекта как на плоскости, так и в пространстве.

Чтобы определить положение тела на плоскости, объект представляют точкой и находят координату этой точки на двух осях пространства.

Рассмотрим алгоритмы решения математических задач с помощью прямоугольной декартовой системы координат на плоскости.

Определение координат заданных точек на координатной плоскости.

Если на координатной плоскости задана некоторая точка А и требуется найти ее координаты, то это делается следующим образом.

Через точку А проводят две прямые: одна параллельная оси Оу, вторая – оси Ох.

Прямая, параллельная оси Оу, пересечет ось Ох в точке, которая является абсциссой точки А.

Прямая параллельная оси Ох, пересечет ось Оу в точке, которая является ординатой точки А.

Координата точки А записывается так:

А(хА;уА)

хА– абсцисса точки А (координата по оси Ох).

уА– ордината точки А (координата по оси Оу).

Построение точки на координатной плоскости по заданным координатам.

Чтобы построить точки на плоскости по заданным координатам, действуют в обратном порядке.

Отложить на оси Ох абсциссу точки А и провести перпендикулярную прямую оси Ох через отложенную координату хА.

На оси Оу отложить ординату точки А и провести перпендикулярную прямую оси Оу через отложенную координату уА.

На пересечении полученных перпендикулярных прямых получится точка А(хА; уА).

Источник: https://ladle.ru/education/matematika/6class/koordinatnaya-ploskost

Координатная плоскость – определение расположения точек и фигур

Номера плоскостей на системе координат

С помощью этой системы осуществляется решение задач в геометрии, а также в других научных дисциплинах.

Кроме того, принцип указания точного адреса объекта с помощью двух величин получил широкое распространение во многих отраслях человеческой деятельности.

Системы координат

Под понятием координат в повседневной жизни понимается упорядоченный набор слов, цифр и прочих знаков, позволяющий определить местоположение человека, здания или другого объекта. Эти знания необходимы для ориентирования в современном обществе и организации любой человеческой деятельности.

Трудно даже представить себе мир без системы адресов и нумерации.

Примеры использования:

  • почтовый адрес;
  • номер места в театре, автобусе или самолёте;
  • обозначение положения фигур на шахматной доске;
  • географическая широта и долгота.

Таким образом, система координат необходима не только в математике.

Она буквально пронзает всю человеческую жизнь.

Без применения этих научных знаний люди не смогли бы значительно отдалиться от животных и первобытных предков.

Некоторые области применения:

  1. Геометрия довольно часто пользуется методикой нахождения точки на координатной плоскости или в пространстве.
  2. Математика — построение графиков функций.
  3. География использует собственные координаты (широта и долгота).
  4. Астрономия определяет положение небесных объектов во вселенной.

По определению любая координатная система представляет собой ряд идентификационных данных, которые позволяют узнать положение точки или фигуры в пространстве, а также дают возможность проследить её перемещение.

Наибольшее распространение получила прямоугольная система координат, которую ещё называют декартовой, по имени создателя Рене Декарта. Её популярность основана на простоте и универсальности.

Другие виды координат:

  • полярные;
  • цилиндрические;
  • сферические;
  • косоугольные;
  • биангулярные;
  • биполярные;
  • конические;
  • бицентрические;
  • координаты Риндлера;
  • бицилиндрические;
  • параболические;
  • тороидальные;
  • проективные;
  • трилинейные;
  • эллипсоидальные.

Видя такое множество, можно смело сказать, что задать координаты на плоскости, в двумерном или трёхмерном пространстве можно бесчисленным количеством способов. Для решения определённой задачи стоит выбирать наиболее подходящий метод из всех имеющихся.

Координатная плоскость

Прямоугольная или квадратная система координат была изобретена ещё в XVII веке. Благодаря своей невероятной гениальности, простоте и понятности для большинства людей, она получила широчайшее распространение и с успехом применяется до сих пор.

Чтобы построить фигуру на координатной плоскости, нужно изобразить две линии пересекающиеся под прямым углом:

Точка пересечения O является началом отсчёта, из неё откладываются все значения в координатной системе. Стоит помнить, что вправо и вверх идут положительные величины, а влево и вниз — отрицательные.

Таким образом, две оси образуют квадранты координатной плоскости (четверти). В зависимости от того, в каком из четырёх образовавшихся сегментов находится точка или фигура, будет изменяться её значение.

Местоположение любой точки на координатной плоскости определяется при помощи двух числовых показателей. Первый — это абсцисса x, он откладывается по горизонтали и равен отрезку ОВ. Второй — ордината y, откладывающаяся по вертикали и совпадающая с отрезком ОС.

Выходит, что для задания и записи точного местоположения любой точки А необходимо измерить её расстояние до оси абсцисс и ординат. Схематическая запись координат будет выглядеть как А (x, y) или xА, xB, возможны и другие варианты.

Обычно на практике применяют правостороннюю координатную систему. В этом случае адрес точки принимает положительное значение лишь в правом верхнем квадранте I, образованном правой частью оси ординат (X) и верхней частью оси абсцисс (Y). Иногда бывают ситуации, в которых использование другой ориентации является более целесообразным.

Не стоит считать, что декартовая координатная система может применяться только на плоскости. Она вполне подходит для любого пространства, имеющего конечную размеренность. Всё становиться более сложным — для каждого дополнительного измерения создаётся новая ось.

Для нахождения местоположения точек в привычном трёхмерном пространстве, помимо абсциссы и ординаты, вводится третья координата, именуемая аппликатором (z).

Для этого через точку O проводится дополнительная ось, изображающая третье измерение и являющаяся перпендикулярной к двум остальным.

В этом случае создаётся своеобразная объёмная решётка, а пространство разделяется линиями на 8 частей — октантов.

При рисовании такой системы на листе применяется проекция на плоскость. Третья ось проводится под углом в 45 градусов к остальным, создавая иллюзию трёхмерного пространства.

Историческая справка

Сегодня каждый школьник, учащийся в шестом классе, не только слышал про координатную плоскость, но и знает правило построения простейших фигур в двумерном пространстве. Но так было не всегда.

Необходимость в определении точного местоположения объектов возникла очень давно. Скорее всего, ещё в древнейшие времена существовали примитивные методы записи координат. Более точные системы возникли в Древней Греции. Их появление было связано с потребностью в картографии.

Достоверно известно, что составитель первой карты Анаксимандр Милетский пользовался географической долготой и широтой, запись которых была основана на прямоугольной проекции.

Незадолго до начала нашей эры древнегреческий учёный по имени Гиппарх выдвинул замечательную идею, заключающуюся в опоясывании земного шара параллелями и меридианами и записи информации о положении объектов в виде двух чисел.

В Египте на стене одной из усыпальниц археологами был обнаружен рисунок, состоящий из клеточек и представляющий собой координатную сетку.

Автором прямоугольной системы координат на плоскости является математик Рене Декарт, живший во Франции XVII века. История этого гениального открытия весьма забавна. Дело в том, что в театре тех лет ещё не существовало привычной для современной публики нумерации мест.

Из-за этого нередко возникала страшная путаница, ссоры, драки и даже дуэли. Будучи талантливым математиком, Декарт предложил новый способ обозначения, базирующийся на двух номерах — ряда и кресла.

Это изобретение избавило зрителей от ненужных проблем и произвело настоящий фурор в обществе.

Позже учёный изложил принципы плоскости координат, а также прочие открытия в своём фундаментальном труде «Геометрия». Первые попытки применить метод Декарта к трёхмерному пространству были предприняты в XVIII веке Леонардом Эйлером.

Сегодня при помощи декартовой системы координат можно задать не только расположение простой фигуры, например, треугольника, на плоскости, но и описать любой сложный предмет и его перемещение в пространстве. Метод нашёл широкое применение во многих электронных устройствах и графических программах.

С развитием современных технологий определение географических координат очень упростилось.

Достаточно запустить одно из навигационных приложений или войти в специальный онлайн-сервис, и местоположение будет указано с максимальной точностью.

Поверхность земли имеет сферическую форму, из-за этого географическая система координат имеет свои особенности.

Обозначение любой точки на планете осуществляется при помощи набора цифробуквенных обозначений:

  • широта бывает северная и южная;
  • долгота — восточная и западная;
  • высота над уровнем моря.

Все точки одной широты соединяются параллелями. На экваторе широта составляет 0 градусов, а на полюсе 90. Меридианы соединяют точки с одним и тем же показателем долготы и сходятся на полюсах.

Источник: https://nauka.club/matematika/koordinatnaya-ploskost.html

Индицирование плоскостей и направлений

Номера плоскостей на системе координат

Для того чтобы определить положение отдельных узлов, а также прямых и плоскостей, проходящих через эти узлы в пространственной решетке, в кристаллографии приняты специальные обозначения. Эти обозначения в настоящее время стандартизованы и носят название кристаллографических индексов.

Известно, что положение точки в пространстве, или узла в элементарной ячейке, можно задать тремя координатами, относительно выбранной системы координат.

В кристаллографии описание решетки начинается также с выбора координатной системы, причем выбор осей берется в соответствии с решеткой Бравэ. За начало координат в решетке принимается, как правило, положение одного из узловых атомов.

Существуют два отличия кристаллографической системы координат от обычной геометрической:

1) В кристаллографической системе масштаб измерений по каждой оси самостоятелен и равен периоду идентичности.

2) В случае косоугольной элементарной ячейки в кристаллографии принимается косоугольная система координат, а не ортогональная.

Рис.1.10. Кристаллографические индексы узла [[mnp]].

Рис. 1.10 поясняет понятие кристаллографических индексов узла. Числа m, n, p являющиеся проекциями вектора Rпо оси x, y, z. Они и будут кристаллографическими индексами узла, определяющими его положение в элементарной ячейке. Индексы узла могут быть как целыми так и дробными числами.

Поскольку все ячейки пространственной решетки тождественны, то точке внутри какой-то ячейки соответствует тождественная точка во всех остальных ячейках.

В связи с этим в подавляющем большинстве случаев положение узлов характеризуют узлами, лежащими в первой элементарной ячейке, ближайшей к началу координат. Они и обозначаются символами [[mnp]] или [[ ]].

Эти индексы связаны с реальным положением узла в любой ячейке в решетки как

или (1.1)

Таким образом, положение любого узла можно определить, выразив его координаты , через координаты известного узла, прибавляя или отнимая целые значения m, n, p.

Рис.1.11. Кристаллографические индексы прямых [m n p].

С помощью трех индексов, обозначаемых буквами m, n, p задается и направление семейства параллельных прямых, проходящих через узлы решетки (рис.1.11). Оно определяется индексами узла, поскольку эти же отрезки определяют и положение вектораR

(1.2)

При подстановке вместо букв m, n, p численных значений индексов для определения данного семейства прямых поступают следующим образом.

1) Выбирают прямую, проходящую через начало координат.

2) Для обозначения прямой выбирают индексы того узла, который имеет целочисленные значения m, n, p.

3) Выбранный узел лежит ближе других к началу координат, т.е. индексы его не имеют общего множителя.

Таким образом, индексы семейства параллельных прямых выражаются всегда целыми числами, не имеющими общего множителя, как, например, направления [100], [111], [102]. По индексам этих прямых можно построить их в элементарной ячейке (рис.1.11).

Зная индексы прямой [mnp], можно определить и углы, которые она образуют с осями координат. Например, для кристаллов кубической системы углы между направлением [mnp] и осями x, y, z равны:

(1.3)

При определении угла между двумя произвольными направлениями в кристалле устанавливаем индексы соответствующих им прямых [m1 n1 p1] и [m2 n2 p2]. Тогда, согласно аналитической геометрии, угол j между этими прямыми определяется соотношением:

(1.4)

Подставляя из (1.3) значения cosj в (1.4), получим

(1.5)

Важным моментом является также определение узловой плоскости. Через узлы решетки можно провести ряд, параллельных между собой, узловых плоскостей (рис.1.12). Такие плоскости называются семейством параллельных плоскостей и характеризуются определенным межплоскостным расстоянием.

Рис.1.12. Семейство параллельных плоскостей и кристаллографические индексы плоскостей (hkl).

Пусть плоскость отсекает на осях координат отрезки A, B, C. Уравнение этой плоскости в отрезках

, (1.6)

где: G – целое число; x = ma, y = nb, z = pc – координаты какого-либо узла в плоскости. Так как m = x/a, n = y/b, p = z/c, то можно записать

Величины a/A, b/B, c/C – правильные дроби, и их отношение можно заменить отношением некоторых целых чисел

(1.7)

В этом случае всегда найдется множитель R (целое число, общий их знаменатель), который удовлетворяет условию: и уравнение плоскости может быть записано: или , где N=GR – тоже целое число.

Для соседних плоскостей семейства величина N различается на 1. Так, для плоскости, проходящей через начало координат, mh + nk + pl = 0, ближайшей к началу координат:

mh + nk + pl = 1 (1.8)

Числа h, k, l, обратно пропорциональные отсекаемым плоскостью отрезкам на координатных осях, будут характеризовать положение самой плоскости в кристалле.

Поэтому в кристаллографии принято определять положение плоскостей в элементарной ячейке и решетке кристаллов при помощи этих чисел– индексов, которые даются в круглых скобках. Если числа h,k,l не имеют общего множителя, то они характеризуют все семейство плоскостей.

Кристаллографические индексы плоскости (h k l)называются также индексами Миллера. Задание положения плоскостей индексами Миллера годится только для плоскостей, не проходящих через начало координат [[000]].

Связь индексов Миллера с отрезками, отсекаемыми плоскостью на осях можно проследить на следующих примерах.

1). Плоскость отсекает на осях отрезки: a, b/2, c/3 т.е. A=a, B=b/2, C=c/3. Такую плоскость можно построить в системе координат элементарной ячейки. Чтобы перейти от отрезков к индексам плоскости, берутся величины, обратно пропорциональные отрезкам (в масштабе соответствующих осей). Полученные числа и будут индексами плоскости, т.е. (1,2,3).

2). Аналогично: отрезки, отсекаемые на осях: a/2, b, c – индексы плоскости (2,1,1).

Если индексы содержат общий множитель, то на него можно сократить – получим индексы не конкретной плоскости, а семейства плоскостей.

Обратная задача: построить плоскость с индексами (2,0,1). Отрезки обратно пропорциональны индексам, в масштабах осей это: 1/2, ¥, 1. Откладываем отрезки и строим плоскость.

Если плоскости отсекают по осям отрицательные отрезки, то это отмечается знаком минус над соответствующим индексом, например . Каждая комбинация индексов h, k, l определяет не одну плоскость, а бесконечную совокупность параллельных между собой плоскостей.

При этом индексы (111), (222), (333) определяют одну и туже совокупность параллельных плоскостей (рис.1.12).

Поэтому, если необходимо охарактеризовать сразу все семейство, то выбирают индексы плоскости, во-первых, наиболее близко расположенной к началу координат и, во-вторых, не имеющие общего множителя, т.е. в данном случае (111).

Если же в элементарной ячейке необходимо определить положение какой-либо одной конкретной плоскости, то указывают ее действительные координаты в отрезках, которые обозначаются (H, K, L), где

H=qh; K=qk; L=ql , (1.9)

а q – коэффициент пропорциональности.

Например, плоскость (333) на рис.1.12. Следует при таком построении всегда помнить, что индексы (hkl) или (HKL) обратно пропорциональны отрезкам, отсекаемым плоскостями на координатных осях.

В элементарной ячейке кристалла можно выделить так называемые эквивалентные плоскости, для которых межплоскостные расстояния одинаковы и которые расположены симметричным образом по отношению друг к другу и координатным осям.

Вся совокупность таких плоскостей в элементарной ячейке кубической сингонии определяется простой перестановкой индексов и изменением их знака. Эквивалентными будут например, плоскости (100), (010), (001), , , ­– всего 6 эквивалентных плоскостей.

Из индексов (110) путем перестановок индексов и знаков можно получить 12 эквивалентных плоскостей и т.д.

Количество эквивалентных плоскостей определяется числом перестановок из данных индексов и называется множителем повторяемости. Например, множитель повторяемости для плоскости равен 6. Для других плоскостей значения множителей повторяемости приведены в табл.1.1

Таблица 1.1

Индексыhklh¹k¹lhk0 h¹khklh=k
Множитель повторяемости

Множитель повторяемости учитывается при расчетах интенсивности отраженных различными атомными плоскостями рентгеновских лучей.

4-ый индекс гексагональной системы. В гексагональной системе плоскости часто характеризуют четырьмя индексами (hkil).

Это связано с тем, что во всех сингониях элементарную ячейку выбирают в виде параллелепипеда, а в гексагональной – в виде гексагональной прямоугольной призмы (рис.1.13).

Направления осей x, y, u совершенно равноценны, а периоды повторяемости a, b, d по этим направлениям равны.Поэтому, приняв одну ось координат (вертикальную) за z, мы две другие с равным правом могли бы взять за оси x и y.

Чтобы не было неопределенности, берут на горизонтальном основании призмы не две, а три оси, расположенные одна по отношению к другой под углом 120°. При этом узлы, узловые прямые и плоскости характеризуются не тремя, а четырьмя индексами.

Для определения положения точки в трехмерном пространстве необходимы, как известно, три координаты. Поэтому четвертый индекс i не является независимым. Он равен:

i = – (h+k) (1.10)

Введение четвертого индекса во многих случаях бывает полезным. Например, он помогает различать эквивалентные плоскости гексагональной элементарной ячейки. Так, все боковые плоскости в гексагональной элементарной ячейке (рис.1.13) будут являться эквивалентными. Однако по трем индексам плоскостей и т.д. этого установить не удается.

Более наглядно эквивалентность плоскостей обнаруживается при рассмотрении четырех индексов плоскостей. В этом случае те же плоскости 1, 2, 3 (рис.1.13) запишутся как и т.д. Таким образом, при введении четвертого индекса все плоскости эквивалентны и индексы таких эквивалентных плоскостей можно получить перестановкой трех первых индексов.

Рис. 1.13. Система координат в гексагональной ячейке.

Предыдущая12345678910111213141516Следующая

Дата добавления: 2016-02-04; просмотров: 4684; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/6-80159.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.