Перевод прямоугольных координат

Как перевести географические координаты в прямоугольные

Перевод прямоугольных координат

11:01, 11 апреля 2017 48   0   20346

Не всем понятно, как, а главное — зачем, делается перевод привычных географических координат в прямоугольные. Это вызвано проблемой, что шарообразную поверхность нашей планеты приходится переносить на плоскость карты, поэтому искажения неизбежны.

Гораздо удобнее искать положение точки, когда для плоского изображения применяется система прямоугольных (прямолинейных) координат.

Этот вид исчисления иначе называется проекцией Гаусса — Крюгера, поскольку именно эти двое немецких ученых ее разработали для корректного отображения на карте искривленной земной поверхности.

В нашей стране она до сих пор наиболее применима для военной картографии, геодезии и инженерного проектирования. У стран Запада популярно применение похожей системы координат UTM.

К сведению! Так же полезным будет знать как найти точку по координатам широты и долготы.

Алгоритмы перевода географических координат в прямоугольные

Для быстрого пересчета географических координат в прямолинейные и обратно действуют особые алгоритмы, которые стали основой автоматических программ по такому сервису.

Разработаны также онлайн конвертеры, пересчитывающие как координаты Гаусса — Крюгера, так и UTM, когда градус нахождения объекта, даже его минута и секунда превращаются в точные метры — и наоборот, когда метры трансформируются в градусы.

В программу либо конвертер вводятся параметры широты с долготой, на которых расположен наш объект, а на выходе имеем величины x (горизонтальный параметр) и y (вертикальный параметр). Аналогично делается обратный перевод.

Формула пересчета (ключ) учитывает:

  • нумерацию зоны по Гауссу-Крюгеру (из имеющихся 60-ти);
  • коэффициент масштаба (для Гаусса-Крюгера это единица, для UTM это 0,9996);
  • тригонометрические функции;
  • начальную параллель;
  • осевой меридиан;
  • большую и малую полуоси;
  • условные смещения, присущие начальной параллели по северу, а также центральному меридиану по востоку;
  • величину приплюснутости;
  • эксцентриситет.

В спутниковой навигации ГЛОНАСС и GPS действует постоянное отслеживание координат любого заданного формата. Можно задать величины, чтобы показывалась широта и долгота, а одновременно отображались метры либо километры.

Кстати! Долгое время СССР ключи перевода засекречивал — он выдавался военными для геодезии по специальному запросу.

Что представляют собой прямоугольные координаты

Основа проекций эллипса на плоскость — что по Гауссу-Крюгеру, что по системе UTM — это принцип прямолинейных исчислений Декарта.

Система плоских прямоугольных координат

  • За горизонтальную ось X берется абсцисса (параллель), идущая на восток, за вертикальную Y — ордината (меридиан), идущая на север, за начало отсчета O — их пересечение.
  • Точка, отмеченная на плоскости карты, измеряется вертикальным расстоянием до линии оси X (это будет величина y), плюс горизонтальным до линии оси Y (это будет величина x).
  • Плоскость делится осями на 4 части — так называемых квадранта с нумерацией против часовой стрелки (I, II, III, IV): I квадрант верхний правый (северо-восток), II верхний левый (северо-запад), III нижний левый (юго-запад), IV нижний правый (юго-восток).

Величины имеют как плюсовое значение, так и минусовое, что зависит от положения относительно квадранта:

  • I квадрант имеет обе положительные величины (x, y);
  • II квадрант задает смешанные величины (-x, y);
  • III квадранту присущи обе отрицательные величины (-x,-y);
  • IV квадрант обладает также смешанными величинами (x,-y).

Далее системы имеют существенные различия.

Для проекции  Гаусса-Крюгера отображаемая на карте территория разделена на 60 зон, где расстояние между меридианами приравнено к 6º. Отсчет идет от Гринвича к востоку и к экватору на север. За коэффициент масштаба взята единица. Точкой отсчета выступает пересечение выбранного меридиана с экватором.

Для разработанной американцами системы UTM характерны аналогичные деления на 60 зон, но расчетный меридиан иной — первая по нумерации зона ведет начало от меридиана 177º западной долготы.

Также отличия касаются масштабного коэффициента — он равен 0,9996.

В системе UTM отсутствуют отрицательные значения — для этого к западной абсциссе приплюсовывают 500 километров, а к южной ординате — 10 тысяч километров.

Где применяются прямоугольные системы

Прямоугольные системы актуальны для карт с малым масштабом, для координации между спасателями и военными, для области военной и геодезической картографии, в проектировании объектов на территории, инженерных работах, составлении схематических проектов.

Но основное применение — это геодезия, армия и флот. Именно вооруженные силы большинства государств перешли на прямоугольные координаты, отмечая ими военные объекты.

Источник: https://pohod.info/orientirovanie/geograficheskie-i-prjamougolnye-koordinaty.html

Преобразования прямоугольных координат

Перевод прямоугольных координат

Получим формулы, связывающие координаты точки при переходе от одной прямоугольной системы координат к другой прямоугольной системе координат. Рассмотрим три типа преобразований:

а) параллельный перенос;

б) поворот системы координат;

в) зеркальное отражение в оси абсцисс (изменение направления оси ординат на противоположное).

В каждом случае координаты точки в старой и новой системах координат связаны формулой (2.8). Поэтому достаточно найти вектор переноса начала координат и матрицу перехода от базиса к базису .

а) При параллельном переносе системы координат (рис.2.11,а) базис не изменяется, поэтому матрица перехода является единичной: . Находим координаты вектора переноса начала координат: . Тогда формулу (2.8) можно записать в виде

б) При повороте системы координат на угол (рис.2.11,6) начало новой системы координат совпадает с началом старой, поэтому вектор переноса нулевой: . Разлагая новые базисные векторы по старому базису, получаем Составим матрицу перехода, записывая координаты векторов по столбцам: . Тогда формулу (2.8) можно записать в виде

в) При зеркальном отражении в оси абсцисс (изменении направления оси ординат на противоположное) (рис.2.

11,в) начало новой системы координат совпадает с началом старой, поэтому вектор переноса нулевой: . Разлагая новые базисные векторы по старому базису, получаем (так как ), или .

Составим матрицу перехода, записывая координаты векторов по столбцам: . Тогда формулу (2.8) можно записать в виде .

Аналогично определяется зеркальное отражение в оси ординат (изменение направления оси абсцисс на противоположное).

Покажем, что любое преобразование прямоугольной системы координат сводится к последовательному применению рассмотренных преобразований, т.е. к композиции преобразований систем координат. Действительно, пусть на плоскости заданы две прямоугольные системы координат и .

Сначала, если точки и не совпадают, выполним параллельный перенос старой системы координат на вектор , при этом получим систему координат . Затем при помощи поворота на угол совместим вектор с вектором , при этом получим систему координат , где вектор либо совпадает с вектором , либо противоположен ему .

В первом случае, когда обе системы и одноименные, никаких преобразований делать уже не надо, так как полученная система координат совпадает с заданной (рис.2.12,а). Во втором случае, когда системы и разноименные, для получения системы достаточно изменить направление оси ординат на противоположное, т.е.

выполнить зеркальное отражение в оси (рис.2.12,6). Формулы, связывающие старые и новые координаты точки, имеют вид:

– при одноименных системах координат (рис.2.12,а):

(2.9)

– при разноименных системах координат (рис.2.12,6):

(2.10)

Таким образом, любое преобразование прямоугольной системы координат на плоскости сводится к композиции преобразований, каждое из которых является либо параллельным переносом, либо поворотом, либо зеркальным отражением в оси координат.

Замечания 2.3.

1. Для рассмотренных преобразований координат точек нетрудно получить выражения новых координат через старые:

Для преобразования (2.9) аналогичные формулы имеют вид:

2. При и из соотношений (2.10) получается преобразование изменяющее названия координатных осей (зеркальное отражение в прямой, содержащей биссектрису первого координатного угла).

3. Справедливо утверждение: любое преобразование прямоугольной системы координат на плоскости может быть представлено в виде композиции зеркальных отражений в некоторых прямых.

Для доказательства достаточно показать, что рассмотренные выше преобразования — параллельный перенос (рис.2.11,а) и поворот (рис.2.11,6) — можно представить при помощи композиции зеркальных отражений.

Действительно, параллельный перенос системы координат вдоль оси абсцисс (на вектор ) можно получить при помощи двух отражений: первое — относительно оси ординат (получим систему координат ) , а второе — относительно прямой , проходящей через точку на оси абсцисс параллельно оси ординат (рис.2.13,а).

Аналогично выполняется сдвиг вдоль оси ординат. Поэтому любой параллельный перенос сводится к композиции зеркальных отражений.

Чтобы получить поворот на угол , нужно выполнить два зеркальных отражения (рис.2.13,6): первое — относительно оси ординат (получим систему ), а второе — относительно биссектрисы угла между векторами и .

4. Утверждение пункта 3 можно уточнить: любое преобразование прямоугольной системы координат на плоскости может быть представлено в виде композиции не более трех зеркальных отражений в некоторых прямых.

5. Преобразования координат (2.7) и (2.8) называются ортогональными, если матрица перехода ортогональная, т.е. . Нетрудно но показать, что преобразования (2.9),(2.10) ортогональные, поэтому любое преобразование прямоугольной системы координат является ортогональным.

Пример 2.5. Известны координаты точек и в прямоугольной системе координат на плоскости. Найти координаты точки в прямоугольной системе координат , полученной при помощи зеркального отражения в некоторой прямой системы (рис.2.14).

Решение. Находим вектор переноса начала системы координат , его длину и угол между векторами и , так как .

Ось симметрии при зеркальном отражении является серединным перпендикуляром к отрезку , поэтому угол , который образует ось симметрии с положительным направлением оси абсцисс , равен .

Отражение в оси представим в виде композиции следующих преобразований: параллельного переноса на вектор ; поворота на угол ; зеркального отражения в оси абсцисс (рис.2.12,6). Старые и новые координаты точки связаны формулой (2.10) при . Учитывая, что и

получаем

Подставляя старые координаты точки , получаем ее новые координаты:

Следовательно, точка имеет одинаковые координаты в обеих системах, т.е. точка лежит на оси симметрии .

Преобразования прямоугольных координат в пространстве

Получим формулы, связывающие координаты точки при переходе от одной прямоугольной системы координат в пространстве к другой прямоугольной системе координат.

Рассмотрим три типа преобразований прямоугольной системы координат:

а) параллельный перенос;

б) поворот вокруг координатной оси;

в) зеркальное отражение в координатной плоскости (изменение направления одной координатной оси на противоположное).

В каждом случае координаты точки в старой и новой системах координат связаны формулой (2.7). Поэтому достаточно найти вектор переноса начала координат и матрицу перехода от базиса к базису .

а) При параллельном переносе системы координат базис не изменяется, поэтому матрица перехода является единичной: . Находим координаты вектора переноса начала координат: . Тогда формулу (2.7) можно записать в виде

б) При повороте системы координат на угол (рис.2.11,б) вокруг оси аппликат начало новой системы координат совпадает с началом старой, поэтому вектор переноса нулевой: . Разлагая новые базисные векторы по старому базису, получаем

Составим матрицу перехода , записывая координаты векторов по столбцам. Тогда формулу (2.7) можно записать в виде

Очевидно, что система координат на плоскости при этом преобразовании поворачивается на угол .

в) При зеркальном отражении в плоскости (изменении направления оси аппликат на противоположное) начало новой системы координат совпадает с началом старой, поэтому вектор переноса нулевой: . Разлагая новые базисные векторы по старому базису, получаем

Составим матрицу перехода

Тогда формулу (2.7) можно записать в виде

Аналогично определяются зеркальные отражения в других координатных плоскостях (изменение направлений осей абсцисс или ординат на противоположные).

Матрицы переходов в пунктах “а”, “б” и “в” ортогональные (см. пункт 5 замечаний 2.3).

Как и в случае преобразований на плоскости, можно показать, что любое преобразование прямоугольной системы координат в пространстве сводится к композиции преобразований, каждое из которых является либо параллельным переносам, либо поворотам вокруг координатной оси, либо зеркальным отражением в координатной плоскости.

Углы Эйлера

Используя композицию, получим формулы преобразования координат точки в пространстве при переходе от старой прямоугольной системы к новой , имеющей то же начало и ту же ориентацию (т.е. новая система координат получается из старой поворотом вокруг начала координат ).

Обе системы координат изображены на рис.2.15 (полужирными и двойными линиями соответственно). Чтобы от системы перейти к системе нужно выполнить три поворота. Сначала проведем через точку перпендикуляр (линию узлов) к плоскости .

Направление на этом перпендикуляре выберем так, чтобы ориентация системы координат совпадала бы с ориентацией системы координат . Если оси и совпадают, то ось выбирается совпадающей с осью .

Если оси и противоположно направлены, то и ось выбирается противоположно направленной оси . Затем последовательно сделаем три поворота:

– первый поворот выполним вокруг оси на угол от оси до оси (получим систему координат , оси и которой изображены штриховыми линиями на рис.2.15);

– второй поворот выполним вокруг оси на угол от оси до оси , при этом ось примет положение (получим систему координат , ось которой Рис.2.15 изображена двойной штриховой линией на рис.2.15);

– третий поворот выполним вокруг оси на угол от оси до оси .

Указанные углы называются углами Эйлера, в частности, угол называется углом прецессии, угол — углом нутации, а угол — углом чистого вращения.

Согласно пункту “б”, запишем матрицы переходов от базиса к базису для указанных поворотов соответственно:

По свойству 1 (см. разд.2.2.1) получаем матрицу перехода от базиса прямоугольной системы координат к базису прямоугольной системы координат :

Отсюда следуют формулы для преобразования прямоугольных координат точки

Поскольку каждая из матриц ортогональная, то и их произведение также является ортогональной матрицей (см. пункт 5 замечаний 2.3).

Пример 2.6. Прямоугольная система координат получена из стандартной системы координат при помощи поворота на угол вокруг прямой, проходящей через начало координат и образующей равные углы с координатными осями (на рис.2.16 эта прямая изображена одной точкой , поскольку перпендикулярна плоскости рисунка). Требуется найти углы Эйлера.

Решение. Составим матрицу перехода от базиса к базису .

Так как , то

Сравнивая с матрицей , заключаем, что (так как и ); (так как и ); (так как и ).

Источник: http://MathHelpPlanet.com/static.php?p=pryeobrazovaniya-pryamougolnyh-koordinat

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.